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Abstract— For robots to be accepted by the public in shared
spaces, they must navigate these environments in ways that
are not just safe, but are also acceptable for coexisting people.
Through a human-subjects experiment (N = 11), this research
examines the impact of robot path shape and speed on the
affective states of people when passing them in a hallway
environment. In this study, a custom-built robot followed three
unique path plans at two different speeds to navigate around
participants in a hallway. The effect of variance of robot motion
from the planned path was also studied. Participants reported
their affective states through sliders that let them represent
their levels of arousal and pleasure during the encounter
with the robot. We found that robot speed and path variance
have effects on participant arousal. While we did not find a
significant effect of curvature on participant affective state. We
discuss the emergent trends in the context of a similar study
conducted in virtual reality.

I. INTRODUCTION

Mobile robots are becoming more common in daily life
[1]. From cleaning floors to making deliveries, in private
homes, public spaces, and workplaces, their presence is be-
coming increasingly normal [2]. As robots navigate through
spaces shared with people, it is critical to understand the
impact that the introduction of robots has on coexisting
people. These consequences can be social, physical, and
psychological, and fully characterizing them can lead to
improved robot designs [3].

Many factors influence the interaction between people and
mobile robots such as robot appearance, communication,
and safety [4], this work focuses on robot navigation. In
particular, it aims to make path planning more socially
acceptable by empirically characterizing how the shape of a
robot’s path impacts the affective states of coexisting people.

This research builds on our prior work in which we
conducted an experiment in a virtual reality (VR) hallway
environment where a robot would pass human subjects
following a series of cubic Bezier curve-shaped trajectories
[5]. The results from that study showed that the distance
at which a robot begins its avoidance motion (its signaling
distance) impacts the affective state reported by participants.
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Additionally, the experiment suggested that the sharpness of
curvature of the robot’s passing motion has an impact on the
induced affective state of the participant. While that study
provided new insight into how robot trajectory shape effects
the affective states of people encountered by the robot, it
also raised several questions that we sought to answer with
this study.

Specifically, we wanted to understand how people respond
in real encounters with robots. To attain a higher degree
of realism, we made two important changes from the prior
study. First, the experiment was conducted in a physical envi-
ronment with participant encountering a real robot in a mock-
up hallway environment, not in VR. This is a significant
change because experiences in VR, though highly immersive,
are inherently different from real world experiences. For
example, the robot motion in VR follows the prescribed
trajectory perfectly smoothly, whereas with a real robot there
are physical constraints on the motion due to the mechanics
and dynamics of the system. The second major difference
from the prior study is that the robot trajectories being tested
were produced by a realistic path planner instead of being
cubic Bezier curves which are not typically the trajectory
shapes that robots follow.

II. RELATED WORK

Proxemics is the field of research that studies how the
distance between two agents in an environment impacts
their perception of each other [6]. Pacciarotti et al empiri-
cally determined proximal rules for human-robot interactions
[7]. Bera et al. modeled proxemic zones around people
as circularly shaped [8], while others used proxemic rules
as low-level safety constraints in social navigation systems
[9]. Neggers et al. performed experiments to determine the
precise shape of a person’s personal space during interactions
with robots [10]. These efforts have expanded what is known
about human perception of robots, and how it can be used
in a robotic navigation system. However, proximal spaces
are only one dimension through which to consider spatial
relationships between people and robots. Khambhaita et
al. expanded on this to consider the projected time to a
future collision as a constraint for socially aware robot path
planners [9]. The present research evaluates other dimensions
such as path curvature and path variance to lend finer
resolution to the time-integrated view to these interactions.

III. METHODOLOGY

We made several methodological decisions to achieve our
goals of evaluating differently shaped robot trajectories in



a more realistic way than the prior VR experiments. How-
ever, several parallels between the experimental setups were
deliberately maintained to enable some broad comparison
between them.

A. Robot Platform

The robot used for this experiment was a custom-built
omnidirectional mobile robot with a height of 1.37 meters.
This height is one of the reasons that this platform was
chosen, since it provides more of an obstructing presence
than a smaller robot and is comparable to the height of social
mobile robots currently on the market [11]. This is the same
robot that was modeled in VR for the prior experiment. 1.

Fig. 1. Experiment environment with robot in foreground, approximate
trajectory for one trial (including loop back to start position) shown with
red arrows, and position of participant represented with the yellow figure.

The robot is controlled via a remote LabView program.
This program streams the robot’s position via the Vicon
DataStream SDK MatLAB DotNet interface and provides
control signals to the robot’s motors via the onboard MyRIO
microcontroller.

B. Environment Design

Due to the necessity of using a Vicon camera-based motion
capture system as part of the robot’s motion control pipeline,
the experiment was conducted in the largest Vicon-equipped
lab available. The usable workspace for the Vicon system in
this lab is a 4 meter by 6 meter rectangle. To maximize the
space available for the robot’s approach and passing motion,
the main axis of the robot’s motion was along a diagonal of
this workspace. To give the environment a shape more similar
to the narrow hallway tested in VR, we draped three layers
of high-visibility tape where the walls of the hallway would
be. These barriers were approximately two meters tall, and
enclosed an experimental area that was approximately four
meters wide. The environment can be seen in the background
of Figure 1. Had a larger space been available, we could
have more closely replicated the dimensions of the VR
environment, however, practical constraints precluded this.

Fig. 2. Affective Slider interface used by participants to self report their
affective states

C. Data Acquisition

The primary dependent measures in this experiment were
the affective states of participants which they reported after
each trial using an Affective Slider interface set up on a
laptop that was within their reach during the experiment. This
interface is shown in Figure 2. After each trial, participants
were instructed to report their level of arousal and pleasure
during the preceding encounter. Slider values were converted
to whole numbers in the range of 1-100. In addition to
the self-reported affective states collected via the Affective
Slider interface, participants also provided answers to pre-
and post-participation questionnaires, and had their heart rate
and galvanic skin response measured during the experiment.
Only the self-reported affective states will be analyzed in this
paper.

D. Conditions Tested

Three robot trajectories were tested and each trajectory
was tested at two speeds, for a total of six unique com-
binations of trajectories and speeds. Each condition was
repeated four times for a total of 24 trials per participant.
All participants encountered all of the trials, however, the
order of the trials was randomized for each participant. In
keeping with the goal of testing realistic robot motions, the
robot trajectories were generated using the ROS Navigation
stack [12] in conjunction with the social costmap layer [13].
The hallway was represented in the planning environment,
with a ‘person’ object located where the participants in the
experiment would be located. Although the participants in
our study stood still, the ‘person’ object in the planning
environment was assigned a velocity towards the robot in
order to produce an elongated gaussian cost layer around
the person. The robot was always given the same starting
position, three meters ahead of the person, and the same goal
position, 0.8 meters to the left hand side of the person. The
default Navfn planner was used with Dijkstra’s expansion.
The only parameter varied to produce unique paths was the
cost scaling factor. Setting this parameter to 0.10, 0.15, and
0.20 allowed us to generate robot paths with varied sharpness
of curvature, shown in Figure 3.



Fig. 3. ROS-generated trajectories for each of the three cost scaling factors

E. Participants

This study was conducted in accordance with Rutgers
University IRB-approved protocol Pro2023002444. Our par-
ticipant pool was drawn from the university population. Our
test subjects included 11 participants (four females and seven
males) with an average age of 19.4 years (σ = 1.2 years).

F. Procedure

When participants arrived at the testing location they were
given a safety briefing and overview of the experiment which
included a brief demonstration of the robot’s motion and how
to use the Affective Slider interface. After this, they read
and signed the informed consent documentation and filled
out the pre-participation questionnaire. Next, the participants
were led to their mark in the lab, which they were instructed
to stand on during the experiment. Their mark was located
in the center of the width of the hallway at one end. The
Affective Slider laptop and sensors were set up, then the
participants were informed that the experiment would begin
momentarily.

For each of the trials, the robot began at a position opposite
the person at the other end of the hallway, four meters away.
The robot then moved straight towards the person at one of
the two experimental speeds for one meter, then it began
one of the three passing motions once it reached a signaling
distance of three meters from the participant. After the robot
passed by the side of the participant, the robot followed a
rectangular path back to its starting position for the next trial.
Participants reported their affective state using the Affective
Slider interface on the nearby laptop after each trial.

IV. RESULTS

A necessary first step in analyzing the results of this
experiment is to quantify how the variation of the path
planning parameters (i.e. the cost scaling factor) altered the
trajectory of the robot. There are many ways to look at
the differences between these trajectories, but since this
experiment was motivated by prior work focused on the
sharpness of curvature of the robot path, we will focus on
this aspect.

The curvature for each of the three trajectories was de-
fined using the mathematical definition of curvature (κ) in
Equation 1.

κ =
1

R
(1)

Fig. 4. Plot of participant arousal versus robot path curvature

Fig. 5. Sample robot trajectory illustrating a high path variance (in this
case, variance = 3363)

Where R is the radius of the smallest circle that can be
inscribed within the trajectory.

We excluded from all analyses 14 trials (5.6%) in which
path variance was more than three times as great as the
variance in the next highest trial. We analyzed participants’
arousal and pleasure levels using 2 (speed) x 3 (curvature)
Bayesian ANOVAs in which participant was a random factor.
For arousal, the best fitting model (BF10 = 18.9) included
only speed (BFincl = 13.2), with participants’ reporting
higher arousal levels when the robot moved at the higher
speed (see Figure 4). For pleasure, the best fitting model was
the null model, indicating that neither speed nor curvature,
nor their interaction affected participants’ reported pleasure
level.

During the review of the robot trajectory data gathered
during the experiment, we found that although the average
trajectories for each condition were consistent across partic-
ipants, there was substantial variance in several individual
trials caused by inconsistencies in the Vicon system used for
controlling the robot’s position. This variance was manifested
in the robot not following the trajectory in a smooth way.
Instead, the robot would follow a zig-zagging path centered
on the trajectory. An example of a high-variance path is
shown in Figure 5.

We systematically analyzed the effect of this path variance.
We truncated the trajectory data to focus on the portion
during which the robot was moving to avoid the person. Both
the average and trial trajectories were resampled to contain
the same number of points. Path variance for each trial was
then calculated as shown in Equation 2.

V =
1

N

N∑
i=1

(
(xi − x̄i)

2 + (yi − ȳi)
2
)

(2)



We investigated the impact of path variance on arousal
and pleasure via Bayesian multiple regression models with
path variance, speed and curvature as factors. For arousal,
the best fitting model (BF10 = 11.4) included path variance
and speed, with participants reporting higher arousal levels
for trials with greater path variance (BFincl = 6.8) and speed
(BFincl = 2.1). For pleasure, the best fitting model (BF10 =
3.8) included only path variance, with participants reporting
lower pleasure levels for trials with greater path variance
(BFincl = 2.1).

V. DISCUSSION

Our finding that higher robot speeds lead to greater arousal
in a person being passed builds on previous results that show
that greater robot speeds are less comfortable for people [14].
Additionally, our finding that higher path variance results
in higher arousal and lower pleasure provides empirical
psychological evidence to support the goal of reducing jerk
in robot motion, which supplements the typical motivation
of easing the electromechanical control problem [15], [16].

While numerous aspects of this experiment differed from
the VR experiment that served as inspiration for it, we find
it worthwhile to discuss the curvature results in that context.
Our prior work found that there is a significant effect of
curvature on participant affective state, while this experiment
demonstrated no such effect. To more accurately compare
the experiments, we recalculate the curvature values from
the prior experiment in a similar manner as we did for this
experiment. Figure 6 shows the average arousal data with
these recalculated curvature values from the VR experiment
with the most similar signaling distance (four meters) along
with the data from this experiment.

The disparities between these results, though somewhat
surprising, should be taken in the context of the significant
differences between the experimental conditions. During this
experiment, the robot began its avoidance motion when it was
three meters away from the person, instead of four meters, as
was the case in the VR data plotted. This smaller signaling
distance could contribute to the higher arousal in response to
the real robot at lower curvature, however it does not explain
why the arousal curve for the real robot drops below the
curve for the VR robot at higher curvature values. Similarly,
the use of a real robot over a simulated one could have
contributed to higher arousal for lower curvature conditions,
however it does not explain the change in the trend of arousal
as curvature is varied.

One possible cause for this is that the shape of the
robot trajectory is not fully encapsulated by the curvature
measure. This measure does not account for variation in
apparent signaling distance. Although the robots all begin
their avoidance motion at the same point in each experiment
(three meters from the person with the real robot, and four
meters from the person with the VR robot), the shapes of
the avoidance motions vary such that it may be perceived as
beginning the avoidance motion later than it actually is. In
other words, when executing a lower-curvature condition, the

Fig. 6. Participant arousal versus curvature for the two most comparable
conditions between the real robot and the VR experiments

robot may appear to be getting closer to the person before
moving to avoid them.

VI. LIMITATIONS

One of the major limitations to this study is the cultural
homogeneity of the population of participants. All were
university students in the United States. Further studies are
needed to determine how well these results translate to other
age, social, and cultural contexts.

The narrow range of robot trajectories tested is another
limitation. We evaluated three trajectories and two robot
speeds. The role of other robot motion parameters and
environmental factors need to be studied further.

VII. CONCLUSIONS AND FUTURE WORK

Our statistical analysis found that robot speed and path
variance had significant effects on participant arousal. Ad-
ditionally, while we did not find a statistically significant
effect of curvature on the affective states of participants, we
observe that the trends in the data do not align with previous
studies of robot path curvature. We speculate that there are
several causes for this divergence, including experimental
setup, overall path shape, and apparent signaling distance
differences.

Future work will continue to explore the role that robot
path shape has on the affective states of coexisting people. In
particular, we will explore a wider range of curvatures, and
investigate more complex multi-robot and multi-human sce-
narios. Another area of future work is to apply the findings
of this study to improve robot path planners. Approaches
for doing this include guiding the tuning of path planning
parameters, supplementing costmap layers, and developing
novel post-processors to achieve desired affective responses
from people. Additionally, the trajectory and affective state
data collected in these experiments can be used to train a
machine learning model to achieve the same goal.
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